Coopetitive Soft Gating Ensemble
In this article, we proposed the Coopetititve Soft Gating Ensemble or CSGE for general machine learning tasks. The goal of machine learning is to create models which poses a high generalisation capability. But often problems are too complex to be solved by a single model. Therefore, ensemble methods combine predictions of multiple models. The CSGE comprises a comprehensible combination based on three different aspects relating to the overall global historical performance, the local-/situation-dependent and time-dependent performance of its ensemble members. The CSGE can be optimised according to arbitrary loss functions making it accessible for a wider range of problems. We introduce a novel training procedure including a hyper-parameter initialisation at its heart. We show that the CSGE approach reaches state-of-the-art performance for both classification and regression tasks. Still, the CSGE allows to quantify the influence of all base estimators by means of the three weighting aspects in a comprehensive way. In terms of Organic computing (OC), our CSGE approach combines multiple base models towards a self-organising complex system. Moreover, we provide a scikit-learn compatible implementation.
READ FULL TEXT