Coordinated Beamforming in Quantized Massive MIMO Systems with Per-Antenna Constraints
In this work, we present a solution for coordinated beamforming for large-scale downlink (DL) communication systems with low-resolution data converters when employing a per-antenna power constraint that limits the maximum antenna power to alleviate hardware cost. To this end, we formulate and solve the antenna power minimax problem for the coarsely quantized DL system with target signal-to-interference-plus-noise ratio requirements. We show that the associated Lagrangian dual with uncertain noise covariance matrices achieves zero duality gap and that the dual solution can be used to obtain the primal DL solution. Using strong duality, we propose an iterative algorithm to determine the optimal dual solution, which is used to compute the optimal DL beamformer. We further update the noise covariance matrices using the optimal DL solution with an associated subgradient and perform projection onto the feasible domain. Through simulation, we evaluate the proposed method in maximum antenna power consumption and peak-to-average power ratio which are directly related to hardware efficiency.
READ FULL TEXT