CorrGAN: Input Transformation Technique Against Natural Corruptions

04/19/2022
by   Mirazul Haque, et al.
0

Because of the increasing accuracy of Deep Neural Networks (DNNs) on different tasks, a lot of real times systems are utilizing DNNs. These DNNs are vulnerable to adversarial perturbations and corruptions. Specifically, natural corruptions like fog, blur, contrast etc can affect the prediction of DNN in an autonomous vehicle. In real time, these corruptions are needed to be detected and also the corrupted inputs are needed to be de-noised to be predicted correctly. In this work, we propose CorrGAN approach, which can generate benign input when a corrupted input is provided. In this framework, we train Generative Adversarial Network (GAN) with novel intermediate output-based loss function. The GAN can denoise the corrupted input and generate benign input. Through experimentation, we show that up to 75.2 misclassified inputs can be classified correctly by DNN using CorrGAN.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset