Cross-City Traffic Prediction via Semantic-Fused Hierarchical Graph Transfer Learning

02/23/2023
by   Kehua Chen, et al.
0

Accurate traffic prediction benefits urban management and improves transportation efficiency. Recently, data-driven methods have been widely applied in traffic prediction and outperformed traditional methods. However, data-driven methods normally require massive data for training, while data scarcity is ubiquitous in low-developmental or newly constructed regions. To tackle this problem, we can extract meta knowledge from data-rich cities to data-scarce cities via transfer learning. Besides, relations among urban regions can be organized into various semantic graphs, e.g. proximity and POI similarity, which is barely considered in previous studies. In this paper, we propose Semantic-Fused Hierarchical Graph Transfer Learning (SF-HGTL) model to achieve knowledge transfer across cities with fused semantics. In detail, we employ hierarchical graph transformation followed by meta-knowledge retrieval to achieve knowledge transfer in various granularity. In addition, we introduce meta semantic nodes to reduce the number of parameters as well as share information across semantics. Afterwards, the parameters of the base model are generated by fused semantic embeddings to predict traffic status in terms of task heterogeneity. We implement experiments on five real-world datasets and verify the effectiveness of our SF-HGTL model by comparing it with other baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset