Cross-Database Micro-Expression Recognition: A Benchmark
Cross-database micro-expression recognition (CDMER) is one of recently emerging and interesting problem in micro-expression analysis. CDMER is more challenging than the conventional micro-expression recognition (MER), because the training and testing samples in CDMER come from different micro-expression databases, resulting in the inconsistency of the feature distributions between the training and testing sets. In this paper, we contribute to this topic from three aspects. First, we establish a CDMER experimental evaluation protocol aiming to allow the researchers to conveniently work on this topic and provide a standard platform for evaluating their proposed methods. Second, we conduct benchmark experiments by using NINE state-of-the-art domain adaptation (DA) methods and SIX popular spatiotemporal descriptors for respectively investigating CDMER problem from two different perspectives. Third, we propose a novel DA method called region selective transfer regression (RSTR) to deal with the CDMER task. Our RSTR takes advantage of one important cue for recognizing micro-expressions, i.e., the different contributions of the facial local regions in MER. The overall superior performance of RSTR demonstrates that taking into consideration the important cues benefiting MER, e.g., the facial local region information, contributes to develop effective DA methods for dealing with CDMER problem.
READ FULL TEXT