Curse of Dimensionality on Randomized Smoothing for Certifiable Robustness

02/08/2020
by   Aounon Kumar, et al.
0

Randomized smoothing, using just a simple isotropic Gaussian distribution, has been shown to produce good robustness guarantees against ℓ_2-norm bounded adversaries. In this work, we show that extending the smoothing technique to defend against other attack models can be challenging, especially in the high-dimensional regime. In particular, for a vast class of i.i.d. smoothing distributions, we prove that the largest ℓ_p-radius that can be certified decreases as O(1/d^1/2 - 1/p) with dimension d for p > 2. Notably, for p ≥ 2, this dependence on d is no better than that of the ℓ_p-radius that can be certified using isotropic Gaussian smoothing, essentially putting a matching lower bound on the robustness radius. When restricted to generalized Gaussian smoothing, these two bounds can be shown to be within a constant factor of each other in an asymptotic sense, establishing that Gaussian smoothing provides the best possible results, up to a constant factor, when p ≥ 2. We present experimental results on CIFAR to validate our theory. For other smoothing distributions, such as, a uniform distribution within an ℓ_1 or an ℓ_∞-norm ball, we show upper bounds of the form O(1 / d) and O(1 / d^1 - 1/p) respectively, which have an even worse dependence on d.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro