Customized Local Differential Privacy for Multi-Agent Distributed Optimization

06/15/2018
by   Roel Dobbe, et al.
0

Real-time data-driven optimization and control problems over networks may require sensitive information of participating users to calculate solutions and decision variables, such as in traffic or energy systems. Adversaries with access to coordination signals may potentially decode information on individual users and put user privacy at risk. We develop local differential privacy, which is a strong notion that guarantees user privacy regardless of any auxiliary information an adversary may have, for a larger family of convex distributed optimization problems. The mechanism allows agent to customize their own privacy level based on local needs and parameter sensitivities. We propose a general sampling based approach for determining sensitivity and derive analytical bounds for specific quadratic problems. We analyze inherent trade-offs between privacy and suboptimality and propose allocation schemes to divide the maximum allowable noise, a privacy budget, among all participating agents. Our algorithm is implemented to enable privacy in distributed optimal power flow for electric grids.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset