Cyclostationary Statistical Models and Algorithms for Anomaly Detection Using Multi-Modal Data

07/02/2018
by   Taposh Banerjee, et al.
0

A framework is proposed to detect anomalies in multi-modal data. A deep neural network-based object detector is employed to extract counts of objects and sub-events from the data. A cyclostationary model is proposed to model regular patterns of behavior in the count sequences. The anomaly detection problem is formulated as a problem of detecting deviations from learned cyclostationary behavior. Sequential algorithms are proposed to detect anomalies using the proposed model. The proposed algorithms are shown to be asymptotically efficient in a well-defined sense. The developed algorithms are applied to a multi-modal data consisting of CCTV imagery and social media posts to detect a 5K run in New York City.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro