Data-driven classification of low-power communication signals by an unauthenticated user using a software-defined radio

09/08/2023
by   Tarun Rao Keshabhoina, et al.
0

Many large-scale distributed multi-agent systems exchange information over low-power communication networks. In particular, agents intermittently communicate state and control signals in robotic network applications, often with limited power over an unlicensed spectrum, prone to eavesdropping and denial-of-service attacks. In this paper, we argue that a widely popular low-power communication protocol known as LoRa is vulnerable to denial-of-service attacks by an unauthenticated attacker if it can successfully identify a target signal's bandwidth and spreading factor. Leveraging a structural pattern in the LoRa signal's instantaneous frequency representation, we relate the problem of jointly inferring the two unknown parameters to a classification problem, which can be efficiently implemented using neural networks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro