Data-Driven Evaluation of Training Action Space for Reinforcement Learning

04/08/2022
by   Rajat Ghosh, et al.
0

Training action space selection for reinforcement learning (RL) is conflict-prone due to complex state-action relationships. To address this challenge, this paper proposes a Shapley-inspired methodology for training action space categorization and ranking. To reduce exponential-time shapley computations, the methodology includes a Monte Carlo simulation to avoid unnecessary explorations. The effectiveness of the methodology is illustrated using a cloud infrastructure resource tuning case study. It reduces the search space by 80% and categorizes the training action sets into dispensable and indispensable groups. Additionally, it ranks different training actions to facilitate high-performance yet cost-efficient RL model design. The proposed data-driven methodology is extensible to different domains, use cases, and reinforcement learning algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro