Data-Efficient Brain Connectome Analysis via Multi-Task Meta-Learning

by   Yi Yang, et al.
Lehigh University
Emory University

Brain networks characterize complex connectivities among brain regions as graph structures, which provide a powerful means to study brain connectomes. In recent years, graph neural networks have emerged as a prevalent paradigm of learning with structured data. However, most brain network datasets are limited in sample sizes due to the relatively high cost of data acquisition, which hinders the deep learning models from sufficient training. Inspired by meta-learning that learns new concepts fast with limited training examples, this paper studies data-efficient training strategies for analyzing brain connectomes in a cross-dataset setting. Specifically, we propose to meta-train the model on datasets of large sample sizes and transfer the knowledge to small datasets. In addition, we also explore two brain-network-oriented designs, including atlas transformation and adaptive task reweighing. Compared to other pre-training strategies, our meta-learning-based approach achieves higher and stabler performance, which demonstrates the effectiveness of our proposed solutions. The framework is also able to derive new insights regarding the similarities among datasets and diseases in a data-driven fashion.


page 1

page 2

page 3

page 4


Deep Meta-learning in Recommendation Systems: A Survey

Deep neural network based recommendation systems have achieved great suc...

Meta-learning with an Adaptive Task Scheduler

To benefit the learning of a new task, meta-learning has been proposed t...

Few Is Enough: Task-Augmented Active Meta-Learning for Brain Cell Classification

Deep Neural Networks (or DNNs) must constantly cope with distribution ch...

Revisiting Meta-Learning as Supervised Learning

Recent years have witnessed an abundance of new publications and approac...

MetalGAN: a Cluster-based Adaptive Training for Few-Shot Adversarial Colorization

In recent years, the majority of works on deep-learning-based image colo...

How well does your sampler really work?

We present a new data-driven benchmark system to evaluate the performanc...

MetaTune: Meta-Learning Based Cost Model for Fast and Efficient Auto-tuning Frameworks

Deep learning compiler frameworks are gaining ground as a more portable ...

Please sign up or login with your details

Forgot password? Click here to reset