Data-Rate Driven Transmission Strategy for Deep Learning Based Communication Systems
Deep learning (DL) based autoencoder is a promising architecture to implement end-to-end communication systems. In this paper, we focus on the fundamental problems of DL-based communication systems, including high rate transmission and performance analysis. To address the limited data rate issue, we first consider the error rate constraint and design a transmission algorithm to adaptively select the transmission vectors to maximize the data rate for various channel scenarios. Furthermore, a novel generalized data representation (GDR) scheme is proposed to improve the data rate of DL-based communication systems. Then, we analyze the effect of signal-to-noise ratio (SNR) and mean squared error performance of the proposed DL-based communication systems. Finally, numerical results show that the proposed adaptive transmission and GDR schemes achieve higher data rate and have lower training complexity than the conventional one-hot vector scheme. Both the new schemes and the conventional scheme have comparable block error rate (BLER) performance. According to both theoretical analysis and simulated results, it is suggested that low or wide-range training SNR is beneficial to attain good BLER performance for practical transmission with various channel scenarios.
READ FULL TEXT