Debiased Inference on Identified Linear Functionals of Underidentified Nuisances via Penalized Minimax Estimation

08/17/2022
by   Nathan Kallus, et al.
0

We study generic inference on identified linear functionals of nonunique nuisances defined as solutions to underidentified conditional moment restrictions. This problem appears in a variety of applications, including nonparametric instrumental variable models, proximal causal inference under unmeasured confounding, and missing-not-at-random data with shadow variables. Although the linear functionals of interest, such as average treatment effect, are identifiable under suitable conditions, nonuniqueness of nuisances pose serious challenges to statistical inference, since in this setting common nuisance estimators can be unstable and lack fixed limits. In this paper, we propose penalized minimax estimators for the nuisance functions and show they enable valid inference in this challenging setting. The proposed nuisance estimators can accommodate flexible function classes, and importantly, they can converge to fixed limits determined by the penalization, regardless of whether the nuisances are unique or not. We use the penalized nuisance estimators to form a debiased estimator for the linear functional of interest and prove its asymptotic normality under generic high-level conditions, which provide for asymptotically valid confidence intervals.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset