Debiasing the estimate of treatment effect on the treated with time-varying counfounders

04/07/2022
by   Camille Nevoret, et al.
0

With the increased availability of large health databases comes the opportunity of evaluating treatment effect on new data sources.Through these databases time-dependent outcomes can be analysed as events that can be measured using counting processes. Estimating average treatment effect on the treated (ATT) requires modelling of time-varying covariate and time-dependent treatment and outcome. Gran et al. proposed an easy-to-implement method based on additive intensity regression to estimate ATT. We introduce a debiased estimate of the ATT based on a generalization of the Gran's model for a potentially repeated outcome and in the presence of multiple time-dependent covariates and baseline covariates. Simulation analyses show that our corrected estimator outperforms Gran's uncorrected estimator. Our method is applied to intensive care real-life data from MIMIC-III databases to estimate vasoppressors effect on patients with sepsis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro