Deep Contrastive Learning for Multi-View Network Embedding
Multi-view network embedding aims at projecting nodes in the network to low-dimensional vectors, while preserving their multiple relations and attribute information. Contrastive learning-based methods have preliminarily shown promising performance in this task. However, most contrastive learning-based methods mostly rely on high-quality graph embedding and explore less on the relationships between different graph views. To deal with these deficiencies, we design a novel node-to-node Contrastive learning framework for Multi-view network Embedding (CREME), which mainly contains two contrastive objectives: Multi-view fusion InfoMax and Inter-view InfoMin. The former objective distills information from embeddings generated from different graph views, while the latter distinguishes different graph views better to capture the complementary information between them. Specifically, we first apply a view encoder to generate each graph view representation and utilize a multi-view aggregator to fuse these representations. Then, we unify the two contrastive objectives into one learning objective for training. Extensive experiments on three real-world datasets show that CREME outperforms existing methods consistently.
READ FULL TEXT