Deep Echo State Networks for Diagnosis of Parkinson's Disease

02/19/2018
by   Claudio Gallicchio, et al.
0

In this paper, we introduce a novel approach for diagnosis of Parkinson's Disease (PD) based on deep Echo State Networks (ESNs). The identification of PD is performed by analyzing the whole time-series collected from a tablet device during the sketching of spiral tests, without the need for feature extraction and data preprocessing. We evaluated the proposed approach on a public dataset of spiral tests. The results of experimental analysis show that DeepESNs perform significantly better than shallow ESN model. Overall, the proposed approach obtains state-of-the-art results in the identification of PD on this kind of temporal data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro