Deep KKL: Data-driven Output Prediction for Non-Linear Systems

03/23/2021
by   Steeven Janny, et al.
0

We address the problem of output prediction, ie. designing a model for autonomous nonlinear systems capable of forecasting their future observations. We first define a general framework bringing together the necessary properties for the development of such an output predictor. In particular, we look at this problem from two different viewpoints, control theory and data-driven techniques (machine learning), and try to formulate it in a consistent way, reducing the gap between the two fields. Building on this formulation and problem definition, we propose a predictor structure based on the Kazantzis-Kravaris/Luenberger (KKL) observer and we show that KKL fits well into our general framework. Finally, we propose a constructive solution for this predictor that solely relies on a small set of trajectories measured from the system. Our experiments show that our solution allows to obtain an efficient predictor over a subset of the observation space.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset