Deep-Learning the Landscape

06/08/2017
by   Yang-Hui He, et al.
0

We propose a paradigm to deep-learn the ever-expanding databases which have emerged in mathematical physics and particle phenomenology, as diverse as the statistics of string vacua or combinatorial and algebraic geometry. As concrete examples, we establish multi-layer neural networks as both classifiers and predictors and train them with a host of available data ranging from Calabi-Yau manifolds and vector bundles, to quiver representations for gauge theories. We find that even a relatively simple neural network can learn many significant quantities to astounding accuracy in a matter of minutes and can also predict hithertofore unencountered results. This paradigm should prove a valuable tool in various investigations in landscapes in physics as well as pure mathematics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset