Deep Reinforcement Learning with Dynamic Optimism
In recent years, deep off-policy actor-critic algorithms have become a dominant approach to reinforcement learning for continuous control. This comes after a series of breakthroughs to address function approximation errors, which previously led to poor performance. These insights encourage the use of pessimistic value updates. However, this discourages exploration and runs counter to theoretical support for the efficacy of optimism in the face of uncertainty. So which approach is best? In this work, we show that the optimal degree of optimism can vary both across tasks and over the course of learning. Inspired by this insight, we introduce a novel deep actor-critic algorithm, Dynamic Optimistic and Pessimistic Estimation (DOPE) to switch between optimistic and pessimistic value learning online by formulating the selection as a multi-arm bandit problem. We show in a series of challenging continuous control tasks that DOPE outperforms existing state-of-the-art methods, which rely on a fixed degree of optimism. Since our changes are simple to implement, we believe these insights can be extended to a number of off-policy algorithms.
READ FULL TEXT