DeepDTA: Deep Drug-Target Binding Affinity Prediction

by   Hakime Öztürk, et al.

The identification of novel drug-target (DT) interactions is a substantial part of the drug discovery process. Most of the computational methods that have been proposed to predict DT interactions have focused on binary classification, where the goal is to determine whether a DT pair interacts or not. However, protein-ligand interactions assume a continuum of binding strength values, also called binding affinity and predicting this value still remains a challenge. The increase in the affinity data available in DT knowledge-bases allow the use of advanced learning techniques such as deep learning architectures in the prediction of binding affinities. In this study, we propose a deep-learning based model that uses only sequence information of both targets and drugs to predict DT interaction binding affinities. The few studies that focus on DT binding affinity prediction either use 3D structure of protein-ligand complexes or 2D features of compounds. One novel approach used in this work is the modeling of protein sequences and compound 1D representations with convolutional neural networks (CNNs). The results show that the proposed deep learning based model that uses the 1D representations of targets and drugs is an effective approach for drug target binding affinity prediction. The model in which a high-level representation of a drug is constructed via CNNs and Smith-Waterman similarity is used for proteins achieved the best Concordance Index (CI) performance, outperforming KronRLS, a state-of-the-art algorithm for DT binding affinity prediction, with statistical significance.


page 1

page 2

page 3

page 4


ResDTA: Predicting Drug-Target Binding Affinity Using Residual Skip Connections

The discovery of novel drug target (DT) interactions is an important ste...

AttentionDTA: prediction of drug–target binding affinity using attention model

In bioinformatics, machine learning-based prediction of drug-target inte...

A chemical language based approach for protein - ligand interaction prediction

Identification of high affinity drug-target interactions (DTI) is a majo...

GEFA: Early Fusion Approach in Drug-Target Affinity Prediction

Predicting the interaction between a compound and a target is crucial fo...

DeepAffinity: Interpretable Deep Learning of Compound-Protein Affinity through Unified Recurrent and Convolutional Neural Networks

Motivation: Drug discovery demands rapid quantification of compound-prot...

PANDA: Predicting the change in proteins binding affinity upon mutations using sequence information

Accurately determining a change in protein binding affinity upon mutatio...

TargetNet: Functional microRNA Target Prediction with Deep Neural Networks

MicroRNAs (miRNAs) play pivotal roles in gene expression regulation by b...

Please sign up or login with your details

Forgot password? Click here to reset