DeepPap: Deep Convolutional Networks for Cervical Cell Classification

by   Ling Zhang, et al.

Automation-assisted cervical screening via Pap smear or liquid-based cytology (LBC) is a highly effective cell imaging based cancer detection tool, where cells are partitioned into "abnormal" and "normal" categories. However, the success of most traditional classification methods relies on the presence of accurate cell segmentations. Despite sixty years of research in this field, accurate segmentation remains a challenge in the presence of cell clusters and pathologies. Moreover, previous classification methods are only built upon the extraction of hand-crafted features, such as morphology and texture. This paper addresses these limitations by proposing a method to directly classify cervical cells - without prior segmentation - based on deep features, using convolutional neural networks (ConvNets). First, the ConvNet is pre-trained on a natural image dataset. It is subsequently fine-tuned on a cervical cell dataset consisting of adaptively re-sampled image patches coarsely centered on the nuclei. In the testing phase, aggregation is used to average the prediction scores of a similar set of image patches. The proposed method is evaluated on both Pap smear and LBC datasets. Results show that our method outperforms previous algorithms in classification accuracy (98.3 (AUC) (0.99) values, and especially specificity (98.3 Herlev benchmark Pap smear dataset and evaluated using five-fold cross-validation. Similar superior performances are also achieved on the HEMLBC (H&E stained manual LBC) dataset. Our method is promising for the development of automation-assisted reading systems in primary cervical screening.


page 3

page 4

page 6

page 7

page 8

page 9


A Novel Automation-Assisted Cervical Cancer Reading Method Based on Convolutional Neural Network

While most previous automation-assisted reading methods can improve effi...

Fine-Grained Classification of Cervical Cells Using Morphological and Appearance Based Convolutional Neural Networks

Fine-grained classification of cervical cells into different abnormality...

Comparing Deep Learning Models for Multi-cell Classification in Liquid-based Cervical Cytology Images

Liquid-based cytology (LBC) is a reliable automated technique for the sc...

DeepCervix: A Deep Learning-based Framework for the Classification of Cervical Cells Using Hybrid Deep Feature Fusion Techniques

Cervical cancer, one of the most common fatal cancers among women, can b...

A Guided Spatial Transformer Network for Histology Cell Differentiation

Identification and counting of cells and mitotic figures is a standard t...

CellGAN: Conditional Cervical Cell Synthesis for Augmenting Cytopathological Image Classification

Automatic examination of thin-prep cytologic test (TCT) slides can assis...

Identification of Cervical Pathology using Adversarial Neural Networks

Various screening and diagnostic methods have led to a large reduction o...

Please sign up or login with your details

Forgot password? Click here to reset