Defense-VAE: A Fast and Accurate Defense against Adversarial Attacks

12/17/2018
by   Xiang Li, et al.
0

Deep neural networks (DNNs) have been enormously successful across a variety of prediction tasks. However, recent research shows that DNNs are particularly vulnerable to adversarial attacks, which poses a serous threat to their applications in security-sensitive systems. In this paper, we propose a simple yet effective defense algorithm Defense-VAE that uses variational autoencoder (VAE) to purge adversarial perturbations from contaminated images. The proposed method is generic and can defend white-box and black-box attacks without the need of retraining the original CNN classifiers, and can further strengthen the defense by retraining CNN or end-to-end finetuning the whole pipeline. In addition, the proposed method is very efficient compared to the optimization-based alternatives, such as Defense-GAN, since no iterative optimization is needed for online prediction. Extensive experiments on MNIST, Fashion-MNIST, CelebA and CIFAR-10 demonstrate the superior defense accuracy of Defense-VAE compared to Defense-GAN, while being 50x faster than the latter. This makes Defense-VAE widely deployable in real-time security-sensitive systems. We plan to open source our implementation to facilitate the research in this area.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset