DenoiSpeech: Denoising Text to Speech with Frame-Level Noise Modeling

12/17/2020
by   Chen Zhang, et al.
0

While neural-based text to speech (TTS) models can synthesize natural and intelligible voice, they usually require high-quality speech data, which is costly to collect. In many scenarios, only noisy speech of a target speaker is available, which presents challenges for TTS model training for this speaker. Previous works usually address the challenge using two methods: 1) training the TTS model using the speech denoised with an enhancement model; 2) taking a single noise embedding as input when training with noisy speech. However, they usually cannot handle speech with real-world complicated noise such as those with high variations along time. In this paper, we develop DenoiSpeech, a TTS system that can synthesize clean speech for a speaker with noisy speech data. In DenoiSpeech, we handle real-world noisy speech by modeling the fine-grained frame-level noise with a noise condition module, which is jointly trained with the TTS model. Experimental results on real-world data show that DenoiSpeech outperforms the previous two methods by 0.31 and 0.66 MOS respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset