Dependency Parsing as Head Selection

06/03/2016
by   Xingxing Zhang, et al.
0

Conventional graph-based dependency parsers guarantee a tree structure both during training and inference. Instead, we formalize dependency parsing as the problem of independently selecting the head of each word in a sentence. Our model which we call DeNSe (as shorthand for Dependency Neural Selection) produces a distribution over possible heads for each word using features obtained from a bidirectional recurrent neural network. Without enforcing structural constraints during training, DeNSe generates (at inference time) trees for the overwhelming majority of sentences, while non-tree outputs can be adjusted with a maximum spanning tree algorithm. We evaluate DeNSe on four languages (English, Chinese, Czech, and German) with varying degrees of non-projectivity. Despite the simplicity of the approach, our parsers are on par with the state of the art.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset