Design and Implementation of SMARTHO – A Network Initiated Handover mechanism in NG-RAN, on P4-based Xilinx NetFPGA switches
This report deals with the design of handover schemes for radio access networks (RAN) in 5G networks, using programmable data plane switches. In 5G networks, the NG-RAN architecture splits the Base Band Unit (BBU) into Central and Distributed Units (CU and DU). This structure has created a mid-haul Network, connecting CUs and DUs. The recent advancements in dataplane programmability can be used to enhance system performance. We show how P4 switches can be used to parse the packets between DU, CU, and Back Haul (Core Network) for potential system improvements. In particular, we consider the scenario of mobile handover. The proposed protocol is called SMARTHO, illustrating a smart handover. Programming Protocol-Independent Packet Processors (P4) is a programming language designed to support specification and programming the forwarding plane behavior of network switches/routers. In SMARTHO, we use P4 Switches to intervene in the handover process for fixed-path mobile users. A resource pre-allocation scheme that reserves resources before the UE reaches a future cell, is proposed. The solution is implemented using a P4-based switch introduced between the CU and the DU. The P4 switch is used to spoof the behavior of User Equipment (UE) and perform the resource allocation in advance. The proposed SMARTHO framework is implemented in the mininet emulation environment and in a reconfigurable hardware environment using NetFPGA-SUME boards. The emulation results show a handover response time improvement of 18 for a tandem of two HOs and 25 implementation, we used NetFPGA-SUME boards as P4 switches. The handover time was measured to be approximately 50 milliseconds in the experiments conducted.
READ FULL TEXT