Designing neural networks that process mean values of random variables

04/29/2010
by   Michael J. Barber, et al.
0

We introduce a class of neural networks derived from probabilistic models in the form of Bayesian networks. By imposing additional assumptions about the nature of the probabilistic models represented in the networks, we derive neural networks with standard dynamics that require no training to determine the synaptic weights, that perform accurate calculation of the mean values of the random variables, that can pool multiple sources of evidence, and that deal cleanly and consistently with inconsistent or contradictory evidence. The presented neural networks capture many properties of Bayesian networks, providing distributed versions of probabilistic models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset