Detecting Anomalous Time Series by GAMLSS-Akaike-Weights-Scoring

02/02/2020
by   Cole Sodja, et al.
0

An extensible statistical framework for detecting anomalous time series including those with heavy-tailed distributions and non-stationarity in higher-order moments is introduced based on penalized likelihood distributional regression. Specifically, generalized additive models for location, scale, and shape are used to infer sample path representations defined by a parametric distribution with parameters comprised of basis functions. Akaike weights are then applied to each model and time series, yielding a probability measure that can be effectively used to classify and rank anomalous time series. A mathematical exposition is also given to justify the proposed Akaike weight scoring under a suitable model embedding as a way to asymptotically identify anomalous time series. Studies evaluating the methodology on both multiple simulations and real-world datasets also confirm that high accuracy can be obtained detecting many different and complex types of shape anomalies. Both code implementing GAWS for running on a local machine and the datasets referenced in this paper are available online.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro