Determining parameters in generalized thermomechanics for metamaterials by means of asymptotic homogenization

07/07/2022
by   Bozo Vazic, et al.
0

Advancement in manufacturing methods enable designing so called metamaterials with a tailor-made microstructure. Microstructure affects materials response within a length-scale, where we model this behavior by using the generalized thermomechanics. Strain gradient theory is employed as a higher-order theory with thermodynamics modeled as a first-order theory. Developing multiphysics models for heterogeneous materials is indeed a challenge and even this “simplest” model in generalized thermomechanics causes dozens of parameters to be determined. We develop a computational model by using a given microstructure, modeled as a periodic domain, and numerically calculate all parameters by means of asymptotic homogenization. Finite element method (FEM) is employed with the aid of open-source codes (FEniCS). Some example with symmetric and random distribution of voids in a model problem verifies the method and provides an example at which length-scale we need to consider generalized thermoeleasticity in composite materials.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro