DeVLearn: A Deep Visual Learning Framework for Localizing Temporary Faults in Power Systems
Frequently recurring transient faults in a transmission network may be indicative of impending permanent failures. Hence, determining their location is a critical task. This paper proposes a novel image embedding aided deep learning framework called DeVLearn for faulted line location using PMU measurements at generator buses. Inspired by breakthroughs in computer vision, DeVLearn represents measurements (one-dimensional time series data) as two-dimensional unthresholded Recurrent Plot (RP) images. These RP images preserve the temporal relationships present in the original time series and are used to train a deep Variational Auto-Encoder (VAE). The VAE learns the distribution of latent features in the images. Our results show that for faults on two different lines in the IEEE 68-bus network, DeVLearn is able to project PMU measurements into a two-dimensional space such that data for faults at different locations separate into well-defined clusters. This compressed representation may then be used with off-the-shelf classifiers for determining fault location. The efficacy of the proposed framework is demonstrated using local voltage magnitude measurements at two generator buses.
READ FULL TEXT