DeVLearn: A Deep Visual Learning Framework for Localizing Temporary Faults in Power Systems

11/09/2019
by   Shuchismita Biswas, et al.
0

Frequently recurring transient faults in a transmission network may be indicative of impending permanent failures. Hence, determining their location is a critical task. This paper proposes a novel image embedding aided deep learning framework called DeVLearn for faulted line location using PMU measurements at generator buses. Inspired by breakthroughs in computer vision, DeVLearn represents measurements (one-dimensional time series data) as two-dimensional unthresholded Recurrent Plot (RP) images. These RP images preserve the temporal relationships present in the original time series and are used to train a deep Variational Auto-Encoder (VAE). The VAE learns the distribution of latent features in the images. Our results show that for faults on two different lines in the IEEE 68-bus network, DeVLearn is able to project PMU measurements into a two-dimensional space such that data for faults at different locations separate into well-defined clusters. This compressed representation may then be used with off-the-shelf classifiers for determining fault location. The efficacy of the proposed framework is demonstrated using local voltage magnitude measurements at two generator buses.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset