Differential Privacy Amplification in Quantum and Quantum-inspired Algorithms

03/07/2022
by   Armando Angrisani, et al.
0

Differential privacy provides a theoretical framework for processing a dataset about n users, in a way that the output reveals a minimal information about any single user. Such notion of privacy is usually ensured by noise-adding mechanisms and amplified by several processes, including subsampling, shuffling, iteration, mixing and diffusion. In this work, we provide privacy amplification bounds for quantum and quantum-inspired algorithms. In particular, we show for the first time, that algorithms running on quantum encoding of a classical dataset or the outcomes of quantum-inspired classical sampling, amplify differential privacy. Moreover, we prove that a quantum version of differential privacy is amplified by the composition of quantum channels, provided that they satisfy some mixing conditions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset