Dimension-free Information Concentration via Exp-Concavity

02/26/2018
by   Ya-Ping Hsieh, et al.
0

Information concentration of probability measures have important implications in learning theory. Recently, it is discovered that the information content of a log-concave distribution concentrates around their differential entropy, albeit with an unpleasant dependence on the ambient dimension. In this work, we prove that if the potentials of the log-concave distribution are exp-concave, which is a central notion for fast rates in online and statistical learning, then the concentration of information can be further improved to depend only on the exp-concavity parameter, and hence, it can be dimension independent. Central to our proof is a novel yet simple application of the variance Brascamp-Lieb inequality. In the context of learning theory, our concentration-of-information result immediately implies high-probability results to many of the previous bounds that only hold in expectation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro