DiPietro-Hazari Kappa: A Novel Metric for Assessing Labeling Quality via Annotation

09/17/2022
by   Daniel M. DiPietro, et al.
0

Data is a key component of modern machine learning, but statistics for assessing data label quality remain sparse in literature. Here, we introduce DiPietro-Hazari Kappa, a novel statistical metric for assessing the quality of suggested dataset labels in the context of human annotation. Rooted in the classical Fleiss's Kappa measure of inter-annotator agreement, the DiPietro-Hazari Kappa quantifies the the empirical annotator agreement differential that was attained above random chance. We offer a thorough theoretical examination of Fleiss's Kappa before turning to our derivation of DiPietro-Hazari Kappa. Finally, we conclude with a matrix formulation and set of procedural instructions for easy computational implementation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro