Dirichlet-vMF Mixture Model

02/24/2017
by   Shaohua Li, et al.
0

This document is about the multi-document Von-Mises-Fisher mixture model with a Dirichlet prior, referred to as VMFMix. VMFMix is analogous to Latent Dirichlet Allocation (LDA) in that they can capture the co-occurrence patterns acorss multiple documents. The difference is that in VMFMix, the topic-word distribution is defined on a continuous n-dimensional hypersphere. Hence VMFMix is used to derive topic embeddings, i.e., representative vectors, from multiple sets of embedding vectors. An efficient Variational Expectation-Maximization inference algorithm is derived. The performance of VMFMix on two document classification tasks is reported, with some preliminary analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset