Discovering dependencies in complex physical systems using Neural Networks

01/27/2021
by   Sachin Kasture, et al.
0

In todays age of data, discovering relationships between different variables is an interesting and a challenging problem. This problem becomes even more critical with regards to complex dynamical systems like weather forecasting and econometric models, which can show highly non-linear behavior. A method based on mutual information and deep neural networks is proposed as a versatile framework for discovering non-linear relationships ranging from functional dependencies to causality. We demonstrate the application of this method to actual multivariable non-linear dynamical systems. We also show that this method can find relationships even for datasets with small number of datapoints, as is often the case with empirical data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset