Discretization of inherent ODEs and the geometric integration of DAEs with symmetries

05/17/2022
by   Peter Kunkel, et al.
0

Discretization methods for differential-algebraic equations (DAEs) are considered that are based on the integration of an associated inherent ordinary differential equation (ODE). This allows to make use of any discretization scheme suitable for the numerical integration of ODEs. For DAEs with symmetries it is shown that the inherent ODE can be constructed in such a way that it inherits the symmetry properties of the given DAE and geometric properties of its flow. This in particular allows the use of geometric integration schemes with a numerical flow that has analogous geometric properties.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset