Disentangled Image Matting

09/10/2019
by   Shaofan Cai, et al.
10

Most previous image matting methods require a roughly-specificed trimap as input, and estimate fractional alpha values for all pixels that are in the unknown region of the trimap. In this paper, we argue that directly estimating the alpha matte from a coarse trimap is a major limitation of previous methods, as this practice tries to address two difficult and inherently different problems at the same time: identifying true blending pixels inside the trimap region, and estimate accurate alpha values for them. We propose AdaMatting, a new end-to-end matting framework that disentangles this problem into two sub-tasks: trimap adaptation and alpha estimation. Trimap adaptation is a pixel-wise classification problem that infers the global structure of the input image by identifying definite foreground, background, and semi-transparent image regions. Alpha estimation is a regression problem that calculates the opacity value of each blended pixel. Our method separately handles these two sub-tasks within a single deep convolutional neural network (CNN). Extensive experiments show that AdaMatting has additional structure awareness and trimap fault-tolerance. Our method achieves the state-of-the-art performance on Adobe Composition-1k dataset both qualitatively and quantitatively. It is also the current best-performing method on the alphamatting.com online evaluation for all commonly-used metrics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset