Disguising Personal Identity Information in EEG Signals

10/18/2020
by   Shiya Liu, et al.
0

There is a need to protect the personal identity information in public EEG datasets. However, it is challenging to remove such information that has infinite classes (open set). We propose an approach to disguise the identity information in EEG signals with dummy identities, while preserving the key features. The dummy identities are obtained by applying grand average on EEG spectrums across the subjects within a group that have common attributes. The personal identity information in original EEGs are transformed into disguised ones with a CycleGANbased EEG disguising model. With the constraints added to the model, the features of interest in EEG signals can be preserved. We evaluate the model by performing classification tasks on both the original and the disguised EEG and compare the results. For evaluation, we also experiment with ResNet classifiers, which perform well especially on the identity recognition task with an accuracy of 98.4 disguising model can hide about 90 preserve most of the other key features.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset