Document Similarity from Vector Space Densities

09/01/2020
by   Ilia Rushkin, et al.
0

We propose a computationally light method for estimating similarities between text documents, which we call the density similarity (DS) method. The method is based on a word embedding in a high-dimensional Euclidean space and on kernel regression, and takes into account semantic relations among words. We find that the accuracy of this method is virtually the same as that of a state-of-the-art method, while the gain in speed is very substantial. Additionally, we introduce generalized versions of the top-k accuracy metric and of the Jaccard metric of agreement between similarity models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro