Does ChatGPT resemble humans in language use?
Large language models (LLMs) and LLM-driven chatbots such as ChatGPT have shown remarkable capacities in comprehending and producing language. However, their internal workings remain a black box in cognitive terms, and it is unclear whether LLMs and chatbots can develop humanlike characteristics in language use. Cognitive scientists have devised many experiments that probe, and have made great progress in explaining, how people process language. We subjected ChatGPT to 12 of these experiments, pre-registered and with 1,000 runs per experiment. In 10 of them, ChatGPT replicated the human pattern of language use. It associated unfamiliar words with different meanings depending on their forms, continued to access recently encountered meanings of ambiguous words, reused recent sentence structures, reinterpreted implausible sentences that were likely to have been corrupted by noise, glossed over errors, drew reasonable inferences, associated causality with different discourse entities according to verb semantics, and accessed different meanings and retrieved different words depending on the identity of its interlocutor. However, unlike humans, it did not prefer using shorter words to convey less informative content and it did not use context to disambiguate syntactic ambiguities. We discuss how these convergences and divergences may occur in the transformer architecture. Overall, these experiments demonstrate that LLM-driven chatbots like ChatGPT are capable of mimicking human language processing to a great extent, and that they have the potential to provide insights into how people learn and use language.
READ FULL TEXT