Dynamic Car Dispatching and Pricing: Revenue and Fairness for Ridesharing Platforms
A major challenge for ridesharing platforms is to guarantee profit and fairness simultaneously, especially in the presence of misaligned incentives of drivers and riders. We focus on the dispatching-pricing problem to maximize the total revenue while keeping both drivers and riders satisfied. We study the computational complexity of the problem, provide a novel two-phased pricing solution with revenue and fairness guarantees, extend it to stochastic settings and develop a dynamic (a.k.a., learning-while-doing) algorithm that actively collects data to learn the demand distribution during the scheduling process. We also conduct extensive experiments to demonstrate the effectiveness of our algorithms.
READ FULL TEXT