Dynamic Island Model based on Spectral Clustering in Genetic Algorithm
How to maintain relative high diversity is important to avoid premature convergence in population-based optimization methods. Island model is widely considered as a major approach to achieve this because of its flexibility and high efficiency. The model maintains a group of sub-populations on different islands and allows sub-populations to interact with each other via predefined migration policies. However, current island model has some drawbacks. One is that after a certain number of generations, different islands may retain quite similar, converged sub-populations thereby losing diversity and decreasing efficiency. Another drawback is that determining the number of islands to maintain is also very challenging. Meanwhile initializing many sub-populations increases the randomness of island model. To address these issues, we proposed a dynamic island model (DIM-SP) which can force each island to maintain different sub-populations, control the number of islands dynamically and starts with one sub-population. The proposed island model outperforms the other three state-of-the-art island models in three baseline optimization problems including job shop scheduler problem, travelling salesmen problem and quadratic multiple knapsack problem.
READ FULL TEXT