Dynamic Query Selection for Fast Visual Perceiver

05/22/2022
by   Corentin Dancette, et al.
0

Transformers have been matching deep convolutional networks for vision architectures in recent works. Most work is focused on getting the best results on large-scale benchmarks, and scaling laws seem to be the most successful strategy: bigger models, more data, and longer training result in higher performance. However, the reduction of network complexity and inference time remains under-explored. The Perceiver model offers a solution to this problem: by first performing a Cross-attention with a fixed number Q of latent query tokens, the complexity of the L-layers Transformer network that follows is bounded by O(LQ^2). In this work, we explore how to make Perceivers even more efficient, by reducing the number of queries Q during inference while limiting the accuracy drop.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset