Dynamically Retrieving Knowledge via Query Generation for informative dialogue response
Knowledge-driven dialogue generation has recently made remarkable breakthroughs. Compared with general dialogue systems, superior knowledge-driven dialogue systems can generate more informative and knowledgeable responses with pre-provided knowledge. However, in practical applications, the dialogue system cannot be provided with corresponding knowledge in advance. In order to solve the problem, we design a knowledge-driven dialogue system named DRKQG (Dynamically Retrieving Knowledge via Query Generation for informative dialogue response). Specifically, the system can be divided into two modules: query generation module and dialogue generation module. First, a time-aware mechanism is utilized to capture context information and a query can be generated for retrieving knowledge. Then, we integrate copy Mechanism and Transformers, which allows the response generation module produces responses derived from the context and retrieved knowledge. Experimental results at LIC2022, Language and Intelligence Technology Competition, show that our module outperforms the baseline model by a large margin on automatic evaluation metrics, while human evaluation by Baidu Linguistics team shows that our system achieves impressive results in Factually Correct and Knowledgeable.
READ FULL TEXT