EavesDroid: Eavesdropping User Behaviors via OS Side-Channels on Smartphones
As the Internet of Things (IoT) continues to evolve, smartphones have become essential components of IoT systems. However, with the increasing amount of personal information stored on smartphones, user privacy is at risk of being compromised by malicious attackers. Although malware detection engines are commonly installed on smartphones against these attacks, attacks that can evade these defenses may still emerge. In this paper, we analyze the return values of system calls on Android smartphones and find two never-disclosed vulnerable return values that can leak fine-grained user behaviors. Based on this observation, we present EavesDroid, an application-embedded side-channel attack on Android smartphones that allows unprivileged attackers to accurately identify fine-grained user behaviors (e.g., viewing messages and playing videos) via on-screen operations. Our attack relies on the correlation between user behaviors and the return values associated with hardware and system resources. While this attack is challenging since these return values are susceptible to fluctuation and misalignment caused by many factors, we show that attackers can eavesdrop on fine-grained user behaviors using a CNN-GRU classification model that adopts min-max normalization and multiple return value fusion. Our experiments on different models and versions of Android smartphones demonstrate that EavesDroid can achieve 98 accuracy for 17 classes of user behaviors in the test set and real-world settings, highlighting the risk of our attack on user privacy. Finally, we recommend effective malware detection, carefully designed obfuscation methods, or restrictions on reading vulnerable return values to mitigate this attack.
READ FULL TEXT