Edge-Minimum Saturated k-Planar Drawings
For a class π of drawings of loopless multigraphs in the plane, a drawing D βπ is saturated when the addition of any edge to D results in D' βπ. This is analogous to saturated graphs in a graph class as introduced by TurΓ‘n (1941) and ErdΕs, Hajnal, and Moon (1964). We focus on k-planar drawings, that is, graphs drawn in the plane where each edge is crossed at most k times, and the classes π of all k-planar drawings obeying a number of restrictions, such as having no crossing incident edges, no pair of edges crossing more than once, or no edge crossing itself. While saturated k-planar drawings are the focus of several prior works, tight bounds on how sparse these can be are not well understood. For k β₯ 4, we establish a generic framework to determine the minimum number of edges among all n-vertex saturated k-planar drawings in many natural classes. For example, when incident crossings, multicrossings and selfcrossings are all allowed, the sparsest n-vertex saturated k-planar drawings have 2/k - (k 2) (n-1) edges for any k β₯ 4, while if all that is forbidden, the sparsest such drawings have 2(k+1)/k(k-1)(n-1) edges for any k β₯ 7.
READ FULL TEXT