Efficient Classification of Local Problems in Regular Trees
We give practical, efficient algorithms that automatically determine the distributed round complexity of a given locally checkable graph problem, in two settings. We present one algorithm for unrooted regular trees and another algorithm for rooted regular trees. The algorithms take the description of a locally checkable labeling problem as input, and the running time is polynomial in the size of the problem description. The algorithms decide if the problem is solvable in O(log n) rounds. If not, it is known that the complexity has to be Θ(n^1/k) for some k = 1, 2, …, and in this case the algorithms also output the right value of the exponent k. In rooted trees in the O(log n) case we can then further determine the exact complexity class by using algorithms from prior work; for unrooted trees the more fine-grained classification in the O(log n) region remains an open question.
READ FULL TEXT