Efficient Unsupervised Video Object Segmentation Network Based on Motion Guidance

11/10/2022
by   Chao Hu, et al.
0

Considerable unsupervised video object segmentation algorithms based on deep learning have the problem of substantive model parameters and computation, which significantly limits the application of the algorithm in practice. This paper proposes a video object segmentation network based on motion guidance, considerably reducing the number of model parameters and computation and improving the video object segmentation performance. The model comprises a dual-stream network, motion guidance module, and multi-scale progressive fusion module. Specifically, RGB images and optical flow estimation are fed into dual-stream network to extract object appearance features and motion features. Then, the motion guidance module extracts the semantic information from the motion features through local attention, which guides the appearance features to learn rich semantic information. Finally, the multi-scale progressive fusion module obtains the output features at each stage of the dual-stream network. It gradually integrates the deep features into the shallow ones yet improves the edge segmentation effect. In this paper, numerous evaluations are conducted on three standard datasets, and the experimental results prove the superior performance of the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset