EmotioNet Challenge: Recognition of facial expressions of emotion in the wild
This paper details the methodology and results of the EmotioNet challenge. This challenge is the first to test the ability of computer vision algorithms in the automatic analysis of a large number of images of facial expressions of emotion in the wild. The challenge was divided into two tracks. The first track tested the ability of current computer vision algorithms in the automatic detection of action units (AUs). Specifically, we tested the detection of 11 AUs. The second track tested the algorithms' ability to recognize emotion categories in images of facial expressions. Specifically, we tested the recognition of 16 basic and compound emotion categories. The results of the challenge suggest that current computer vision and machine learning algorithms are unable to reliably solve these two tasks. The limitations of current algorithms are more apparent when trying to recognize emotion. We also show that current algorithms are not affected by mild resolution changes, small occluders, gender or age, but that 3D pose is a major limiting factor on performance. We provide an in-depth discussion of the points that need special attention moving forward.
READ FULL TEXT