Encoding Source Language with Convolutional Neural Network for Machine Translation

03/06/2015
by   Fandong Meng, et al.
0

The recently proposed neural network joint model (NNJM) (Devlin et al., 2014) augments the n-gram target language model with a heuristically chosen source context window, achieving state-of-the-art performance in SMT. In this paper, we give a more systematic treatment by summarizing the relevant source information through a convolutional architecture guided by the target information. With different guiding signals during decoding, our specifically designed convolution+gating architectures can pinpoint the parts of a source sentence that are relevant to predicting a target word, and fuse them with the context of entire source sentence to form a unified representation. This representation, together with target language words, are fed to a deep neural network (DNN) to form a stronger NNJM. Experiments on two NIST Chinese-English translation tasks show that the proposed model can achieve significant improvements over the previous NNJM by up to +1.08 BLEU points on average

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset