End-to-End Learning with Multiple Modalities for System-Optimised Renewables Nowcasting

04/14/2023
by   Rushil Vohra, et al.
0

With the increasing penetration of renewable power sources such as wind and solar, accurate short-term, nowcasting renewable power prediction is becoming increasingly important. This paper investigates the multi-modal (MM) learning and end-to-end (E2E) learning for nowcasting renewable power as an intermediate to energy management systems. MM combines features from all-sky imagery and meteorological sensor data as two modalities to predict renewable power generation that otherwise could not be combined effectively. The combined, predicted values are then input to a differentiable optimal power flow (OPF) formulation simulating the energy management. For the first time, MM is combined with E2E training of the model that minimises the expected total system cost. The case study tests the proposed methodology on the real sky and meteorological data from the Netherlands. In our study, the proposed MM-E2E model reduced system cost by 30

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset